Detecting Gravitational Scattering of Interstellar Objects Using Pulsar Timing
Ross J. Jennings, James M. Cordes, Shami Chatterjee
Cite as: arXiv:1910.08608 [astro-ph.HE]
确定引力散射事件预期的时序信号的形式,该形式呈斜坡状,
The form of the timing signal expected from a gravitational scattering event, which is ramp-like and resembles the signal produced by a glitch or a gravitational wave burst with memory (BWM).
毫秒脉冲星的定时精度
The level of timing precision currently achieved for some millisecond pulsars makes it possible to detect objects as small as $10^{-10} M_{sun}$.
ISO
An interstellar object (ISO) gives rise to a gravitational scattering signal in pulsar timing data if it passes close enough to a pulsar or to the solar system.
Some theories of dark matter predict that at least a fraction of it is composed of massive ISOs, such as primordial black holes (PBHs) or subhalos. As a result, several searches for ISOs have been carried out with the goal of understanding the nature of dark matter.
Subsequently, attention has focused on primordial black holes with masses between $10^{−11}$ and $10^{−8} M_{sun}$ as darkmatter candidates.
PULSAR TIMING PRECISION
脉冲星定时方法依赖于这样一个事实,即每个脉冲星都具有特征性的平均脉冲形状,该形状在几十年的时间尺度上都是稳定的。 通过使用傅立叶域匹配滤波算法(Taylor 1992)将观察到的脉冲形状与模板脉冲形状进行比较来确定到达时间。 通常,使用具有N>>1个脉冲的平均值,N的典型值在10^5 到 10^6 之间。
估计到达时间的最小不确定性来自接收机引入的脉冲轮廓测量中的噪声(辐射仪噪声)。 对于给定的辐射计噪声水平,使用匹配滤波算法计算TOA可以最大程度地减少这种对到达时间误差的影响。 在没有其他误差源的情况下,使用匹配滤波计算的到达时间的不确定性由下式给出:
$\sigma_{MF}=\frac{\sqrt{PW_{eff}}}{S\sqrt{N_{\phi}}}$
P:周期
S:(SNR)
Nφ :number of samples in pulse phase
Weff:effective pulse width
TOA误差来源:
- 脉冲星磁层中发射区运动引起的脉冲抖动 pulse jitter (uncorrelated in time)
- 信号通过电离星际介质的传播而引起的色散和闪烁 dispersion and scintillation (correlated in time)
- 中子星壳与其磁层和超流体内部相互作用自旋噪声 spin noise (correlated in time)
自旋噪声是红噪声,其中大部分功率集中在低频处。 相比之下,辐射计和抖动噪声是白噪声,在所有频率下贡献的功率几乎相等。